Skip to main content

Advertisement

Log in

Macroscopic Supramolecular Assembly and Its Applications

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Macroscopic supramolecular assembly (MSA) has been a recent progress in supramolecular chemistry. MSA mainly focuses on studies of the building blocks with a size beyond ten micrometers and the non-covalent interactions between these interactive building blocks to form ordered structures. MSA is essential to realize the concept of “self-assembly at all scales” by bridging most supramolecular researches at molecular level and at macroscopic scale. This review summaries the development of MSA, the basic design principle and related strategies to achieve MSA and potential applications. Correspondingly, we try to elucidate the correlations and differences between “macroscopic assembly” and MSA based on intermolecular interactions; the design principle and the underlying assembly mechanism of MSA are proposed to understand the reported MSA behaviors; to demonstrate further applications of MSA, we introduce some methods to improve the ordered degree of the assembled structures from the point of precise assembly and thus envision some possible fields for the use of MSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Steed, J. W. and Atwood, J. L., “Supramolecular Chemistry, Second Edition”, Wiley VCH, Weiheim, 2009

    Book  Google Scholar 

  2. Vögtle, F., “Supramolecular Chemistry” (in Chinese), Jilin University Press, Changchun, 1995

    Google Scholar 

  3. Zhang, X. Surface molecular engineering of polymer multilayer films. Acta Polymerica Sinica (in Chinese) 2007, (10), 905–912

    Google Scholar 

  4. Service, R. F. How far can we push chemical self-assembly? Science 2005, 309(5731), 95–95

    Article  CAS  Google Scholar 

  5. Yang, L.; Tan, X.; Wang, Z.; Zhang X. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev. 2015, 115(15), 7196–7239

    Article  CAS  Google Scholar 

  6. Yan, D. Y.; Zhou, Y. F.; Hou, J. Supramolecular self-assembly of macroscopic tubes. Science 2004, 303(5654), 65–67

    Article  CAS  Google Scholar 

  7. Tee, B. K.; Wang, C.; Allen, R.; Bao, Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol., 2012, 7(12), 825–832

    Article  CAS  Google Scholar 

  8. Liu, Y. Q.; Wang, T. Y.; Huan, Y.; Li, Z. B.; He, G. W.; Liu, M. H. Self-assembled supramolecular nanotube yarn. Adv. Mater. 2013, 25(41), 5875–5879

    Article  CAS  Google Scholar 

  9. Stoddart, J. F. Thither supramolecular chemistry? Nat. Chem. 2009, 1(1), 14–15

    Article  CAS  Google Scholar 

  10. Persch, E.; Dumele, O.; Diederich, F. Molecular recognition in chemical and biological systems. Angew. Chem. Int. Ed. 2015, 46(18), 3290–3327

    Article  Google Scholar 

  11. Paleos, C. M.; Pantos, A. Molecular recognition and organizational and polyvalent effects in vesicles induce the formation of artificial multicompartment cells as model systems of eukaryotes. Acc. Chem. Res. 2014, 47(5), 1475–1482

    Article  CAS  Google Scholar 

  12. Langton, M. J.; Beer, P. D. Rotaxane and catenane host structures for sensing charged guest species. Acc. Chem. Res. 2014, 47(7), 1935–1949

    Article  CAS  Google Scholar 

  13. Mattia, E.; Otto, S. Supramolecular systems chemistry. Nat. Nanotechnol. 2015, 10(2), 111–119

    Article  CAS  Google Scholar 

  14. Zhao, Y.; Sakai, F.; Su, L.; Liu, Y. J.; Wei, K. C.; Chen, G. S.; Jiang, M. Progressive macromolecular self-assembly: from biomimetic chemistry to bio-inspired materials. Adv. Mater. 2013, 25(37), 5215–5256

    Article  CAS  Google Scholar 

  15. He, Z.; Jiang, W.; Schalley, C. Integrative self-sorting: a versatile strategy for the construction of complex supramolecular architecture. Chem. Soc. Rev. 2015, 44(3), 779–789

    Article  CAS  Google Scholar 

  16. Wang, C.; Wang, Z.; Zhang, X. Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles. Acc. Chem. Res. 2012, 45(4), 608–618

    Article  CAS  Google Scholar 

  17. Bowden, N.; Terfort, A.; Carbeck, J.; Whitesides, G. M. Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 1997, 276(5310), 233–235

    Article  CAS  Google Scholar 

  18. Bowden, N. B.; Weck, M.; Choi, I. S.; Whitesides, G. M. Molecule-mimetic chemistry and mesoscale self-assembly. Acc. Chem. Res. 2001, 34(3), 231–238

    Article  CAS  Google Scholar 

  19. Birte, S.; Manuel, T.; Maike, B.; Armido, S.; De Cola, L. Dynamic microcrystal assembly by nitroxide exchange reactions. Angew. Chem. Int. Ed. 2010, 49(38), 6881–6884

    Article  Google Scholar 

  20. Cheng, M. J.; Shi, F.; Li, J. S.; Lin, Z. F.; Jiang, C.; Xiao, M.; Zhang, L. Q.; Yang, W. T.; Nishi, T. Macroscopic supramolecular assembly of rigid building blocks through a flexible spacing coating. Adv. Mater. 2014, 26(19), 3009–3013

    Article  CAS  Google Scholar 

  21. Harada, A.; Kobayashi, R.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H. Macroscopic self-assembly through molecular recognition. Nat. Chem. 2011, 3(1), 34–37

    Article  CAS  Google Scholar 

  22. Mulder, A.; Auletta, T.; Sartori, A.; Del, C. S.; Casnati, A.; Ungaro, R.; Husken, J; Reinhoudt, D. N. Divalent binding of a bis(adamantyl)-functionalized calix[4]arene to β-cyclodextrinbased hosts: an experimental and theoretical study on multivalent bining in solution and at self-assembled monolayers. J. Am. Chem. Soc. 2004, 126(21), 6627–6636

    Article  CAS  Google Scholar 

  23. Huskens, J.; Mulder, A.; Auletta, T.; Nijhuis, C. A.; Ludden, M. J.; Reinhoudt, D. N. A model for describing the thermodynamics of multivalent host-guest interactions at interfaces. J. Am. Chem. Soc. 2004, 126(21), 6784–6797

    Article  CAS  Google Scholar 

  24. Fasting, C.; Schalley, C. A.; Weber, M.; Seitz, O.; Hecht, S.; Koksch, B.; Dernedde, J.; Graf, C.; Knapp, E. W.; Haag, R. Multivalency as a chemical organization and action principle. Angew. Chem. Int. Ed. 2012, 51(42), 10472–10498

    Article  CAS  Google Scholar 

  25. Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295(5564), 2418–2421

    Article  CAS  Google Scholar 

  26. Whitesides, G. M.; Boncheva, M. Supramolecular chemistry and self-assembly special feature: beyond molecules: self-assembly of mesoscopic andmacroscopic components. Proc. Natl. Acad. Sci. U S A 2002, 99(8), 4769–4774

    Article  CAS  Google Scholar 

  27. Goodsell D. S. “Bionanotechnology: Lessons from Nature”, Wiley VCH, Weiheim, 2004

    Book  Google Scholar 

  28. Gracias, D. H.; Tien, J.; Breen, T. L.; Hsu, C.; Whitesides, G. M. Forming electrical networks in three dimensions by self-assembly. Science 2000, 289(5482), 1170–1172

    Article  CAS  Google Scholar 

  29. Lewandowski, E. P.; Bernate, J. A.; Tseng, A.; Searson, P. C.; Stebe, K. J. Oriented assembly of anisotropic particles by capillary interactions. Soft Matter 2009, 5(4), 886–890

    Article  CAS  Google Scholar 

  30. Zhang, Z. K.; Pfleiderer, P.; Schofield, A. B.; Clasen, C.; Vermant, J. Synthesis and directed self-sssembly of patterned anisometric polymeric particles. J. Am. Chem. Soc. 2011, 133(3), 392–395

    Article  CAS  Google Scholar 

  31. Wang, J.; Wang, Y.; Sheiko, S.; Betts, D. E.; de Simone, J. Tuning multiphase amphiphilic rods to direct self-sssembly. J. Am. Chem. Soc. 2011, 134(13), 5801–5806

    Article  Google Scholar 

  32. Liu, M.; Zhang, J. G.; Lv, Y.; Xia, S. H. Self-assembly of micro-parts onto Si substrates at liquid-liquid interface. Chin. Phys. Lett. 2006, 23(1), 42–44

    Article  Google Scholar 

  33. Zrínyi, M. Intelligent polymer gels controlled by magnetic fields. Colloid. Polym. Sci. 2000, 278(278), 98–103

    Google Scholar 

  34. Xu, F.; Wu, C.; Rengarajan, V.; Finley, T. D.; Keles, H. O.; Sung, Y.; Li, B. Q.; Gurkan, U. A.; Demirci, U. Three-dimensional magnetic assembly of microscale hydrogels. Adv. Mater., 2011, 23(37): 4254–4260

    Article  CAS  Google Scholar 

  35. Love, J. C.; Urbach, A. R.; Prentiss, M.; Whitesides, G. M. Three-dimensional self-assembly of metallic rods with submicron diameters using magnetic interactions. J. Am. Chem. Soc. 2003, 125(42), 12696–12697

    Article  CAS  Google Scholar 

  36. Tasoglu, S.; Kavaz, D.; Gurkan, U. A.; Guven, S.; Chen, P.; Zheng, R. L.; Demirci, U. Paramagnetic levitational assembly of hydrogels. Adv. Mater., 2013, 25(8), 1137–1143

    Article  CAS  Google Scholar 

  37. Herlihy, K. P.; Nunes, J.; de Simone, J. M. Electrically driven alignment and crystallization of unique anisotropic polymer particles. Langmuir 2008, 24(16), 8421–8426

    Article  CAS  Google Scholar 

  38. Grzybowski, B. A.; Winkleman, A.; Wiles, J. A.; Brumer, Y.; Whitesides, G. M. Electrostatic self-assembly of macroscopic crystals using contact electrification. Nat. Mater. 2003, 2(2), 241–245

    Article  CAS  Google Scholar 

  39. Helm, C. A.; Israelachvili, J. N.; McGuiggan, P. M. Molecular mechanisms and forces involved in the adhesion and fusion of amphiphilic bilayers. Science 1989, 246(4932), 919–922

    Article  CAS  Google Scholar 

  40. Marra, J.; Israelachvili, J. Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions. Biochemistry 1985, 24(17), 4608–4618

    Article  CAS  Google Scholar 

  41. Cademartiri, L.; Bishop, K. J. M. Programmable self-assembly. Nat. Mater. 2015, 14(1), 2–9

    Article  CAS  Google Scholar 

  42. Wang, Y.; Breed, D. R.; Manoharan, V. N.; Feng, L.; Hollingsworth, A. D.; Weck, M.; Pine, D. J. Colloids with valence and specific directional bonding. Nature 2012, 491(7422), 51–55

    Article  CAS  Google Scholar 

  43. Hashidzume, A.; Zheng, Y.; Takashima, Y.; Yamaguchi, H.; Harada, A. Macroscopic self-sssembly based on molecular recognition: effect of linkage between aromatics and the polyacrylamide gel scaffold, amide versus ester. Macromolecules 2013, 46(5), 1939–1947

    Article  CAS  Google Scholar 

  44. Yamaguchi, H; Kobayashi, R; Takashima, Y; Hashidzume, A.; Harada, A. Self-assembly of gels through molecular recognition of cyclodextrins: shape selectivity for linear and cyclic guest molecules. Macromolecules 2011, 44(8), 2395–2399

    Article  CAS  Google Scholar 

  45. Zheng, Y. T.; Hashidzume, A.; Takashima, Y.; Yamaguchi, H.; Harada, A. Macroscopic observations of molecular recognition: discrimination of the substituted position on the naphthyl group by polyacrylamide gel modified with β-cyclodextrin. Langmuir 2011, 27(22), 13790–13795

    Article  CAS  Google Scholar 

  46. Kobayashi, Y.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H.; Harada, A. Reversible self-assembly of gels through metal-ligand interactions. Sci. Rep. 2013, 3(7435), 1243, doi: 10.1038/srep01243

    Article  Google Scholar 

  47. Nakahata, M.; Takashima, Y.; Harada, A. Redox-responsive macroscopic gel assembly based on discrete dual interactions. Angew. Chem. Int. Ed. 2014, 53(14), 3617–3621

    Article  CAS  Google Scholar 

  48. Nakahata, M.; Takashima, Y.; Hashidzume, A.; Harada, A. Macroscopic self-assembly based on complementary interaction between nucleobase pairs. Chem. Eur. J. 2015, 21(7), 2770–2774

    Article  CAS  Google Scholar 

  49. Yamaguchi, H.; Kobayashi, Y.; Kobayashi, R.; Takashima, Y.; Hashidzume, A.; Harada, A. Photoswitchable gel assembly based on molecular recognition. Nat. Commun. 2012, 3(48), 603, doi: 10.1038/ncomms1617

    Article  Google Scholar 

  50. Zheng, Y. T.; Akihito, H.; Harada, A. pH-responsive self-assembly by molecular recognition on a macroscopic scale. Macromol. Rapid. Commun. 2013, 34(13), 1062–1066

    Article  CAS  Google Scholar 

  51. Zheng, Y. T.; Hashidzume, A.; Takashima, Y.; Yamaguchi, H.; Harada, A. Temperature-sensitive macroscopic assembly based on molecular recognition. ACS Macro. Lett. 2012, 1(8), 1083–1085

    Article  CAS  Google Scholar 

  52. Zheng, Y.; Hashidzume, A.; Takashima, Y.; Yamaguchi, H.; Harada, A. Switching of macroscopic molecular recognition selectivity using a mixed solvent system. Nat. Commun. 2012, 3, 831, doi: 10.1038/ncomms1841

    Article  Google Scholar 

  53. Nakahata, M.; Mori, S.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H.; Harada, A. pH- and sugar-responsive gel assemblies based on boronate-catechol interactions. ACS Macro. Lett. 2014, 3(4), 337–340

    Article  CAS  Google Scholar 

  54. Qi, H.; Ghodousi, M.; Du, Y.; Grun, C.; Bae, H.; Yin, P. DNA-directed self-assembly of shape-controlled hydrogels. Nat. Commun. 2013, 4, 2275, doi: 10.1038/ncomms3275

    Article  Google Scholar 

  55. Ma, C. X.; Li, T. F.; Zhao, Q.; Yang, X. X.; Wu, J. J.; Luo, Y. W.; Xie, T. Supramolecular Lego assembly towards three-dimensional multi-responsive hydrogels. Adv. Mater. 2014, 26(32), 5665–5669

    Article  CAS  Google Scholar 

  56. Lu, H. X.; Tang, L. M. Macroscopic self-assembly of organogels through quadruple hydrogel bonding. Acta Polymerica Sinica (in Chinese) 2013, (10), 1241–1246

    Google Scholar 

  57. Yuan, W. Y.; Lu, Z. S.; Li, C. M. Charged drug delivery by ultrafast exponentially grown weak polyelectrolyte multilayers: amphoteric properties, ultrahigh loading capacity and pH-responsiveness. J. Mater. Chem. 2012, 22(18), 9351–9357

    Article  CAS  Google Scholar 

  58. Shen, L. Y.; Fu, J. H.; Fu, K.; Picart, C.; Ji, J. Humidity responsive asymmetric free-standing multilayered film. Langmuir 2010, 26(22), 16634–16637

    Article  CAS  Google Scholar 

  59. Yoo, P. J.; Zacharia, N. S.; Doh, J.; Nam, K. T.; Belcher, A. M.; Hammond, P. T. Controlling surface mobility in interdiffusing polyelectrolyte multilayers. ACS Nano 2008, 2(3), 561–571

    Article  CAS  Google Scholar 

  60. Wang, X.; Liu, F.; Zheng, X. W.; Sun, J. Q. Water-enabled self-healing of polyelectrolyte multilayer coatings. Angew. Chem. Int. Ed. 2011, 50(48), 11378–11381

    Article  CAS  Google Scholar 

  61. Garza, J. M.; Schaaf, P.; Muller, S.; Ball, V.; Stoltz, J.; Voegel, J.; Lavalle, P. Multicompartment films made of alternate polyelectrolyte multilayers of exponential and linear growth. Langmuir 2004, 20(17), 7298–7302

    Article  CAS  Google Scholar 

  62. Cheng, M. J.; Gao, H. T.; Zhang, Y. J.; Wolfgang, T.; Chen, J. F.; Shi, F.; Knoll, W. Combining magnetic field induced locomotion and supramolecular interaction to micromanipulate glass fibers: toward assembly of complex structures at mesoscale. Langmuir 2011, 27(11), 6559–6564

    Article  CAS  Google Scholar 

  63. Wang, R. M.; Xie T. Shape memory- and hydrogen bonding-based strong reversible adhesive system. Langmuir 2010, 26(5), 2999–3002

    Article  CAS  Google Scholar 

  64. Wang, R. M.; Xie T. Macroscopic evidence of strong cation-pi interactions in a synthetic polymer system. Chem. Commun. 2010, 46(8), 1341–1343

    Article  CAS  Google Scholar 

  65. Ahn, Y.; Jang, Y.; Selvapalam, N.; Yun, G.; Kim, K. Supramolecular velcro for reversible underwater adhesion. Angew. Chem. Int. Ed. 2013, 52(11), 3140–3144

    Article  CAS  Google Scholar 

  66. Cheng, M. J.; Ju, G. N.; Zhang, Y. W.; Song, M. M.; Zhang, Y. J.; Shi, F. Supramolecular assembly of macroscopic building blocks through self-propelled locomotion by dissipating chemical energy. Small 2014, 10(19), 3907–3911

    Article  CAS  Google Scholar 

  67. Xiao, M.; Xian, Y. M.; Shi, F. Precise macroscopic supramolecular assembly by combining spontaneous locomotion driven by the marangoni effect and molecular recognition. Angew. Chem. Int. Ed. 2015, 54(31), 8952–8956

    Article  CAS  Google Scholar 

  68. Akram, R.; Cheng, M. J.; Guo, F. L.; Saleem, I.; Shi, F. Toward understanding whether interactive surface area could direct ordered macroscopic supramolecular self-assembly. Langmuir 2016, 32(15), 3617–3622

    Article  CAS  Google Scholar 

  69. Ju, G. N.; Guo, F. L.; Zhang, Q.; Kuehne, A. J. C.; Cheng, M. J.; Shi, F. Self-correction strategy for precise, massive, and parallel macroscopic supramolecular assembly. Adv. Mater. 2017, 29, DOI: 10.1002/adma.201702444

  70. Murphy, S. V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32(8), 773–785

    Article  CAS  Google Scholar 

  71. Wylie, R. G.; Ahsan, S.; Aizawa, Y.; Maxwell, K. L.; Morshead, C. M.; Shoichet, M. S. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 2011, 10(10), 799–806

    Article  CAS  Google Scholar 

  72. Persch, E.; Dumele, O.; Diederich, F. Molecular recognition in chemical and biological systems. Angew. Chem. Int. Ed. 2015, 54(11), 3290–3327

    Article  CAS  Google Scholar 

  73. Jurin, F. E.; Buron, C. C.; Martin, N.; Filiâtre, C. Preparation of conductive PDDA/(PEDOT:PSS) multilayer thin film: influence of polyelectrolyte solution composition. J. Colloid. Interface Sci. 2014, 431, 64–70

    Article  CAS  Google Scholar 

  74. Shin, S.; Lim, S.; Kim, Y.; Kim, T.; Choi, T. L.; Lee, M. Supramolecular switching between flat sheets and helical tubules triggered by coordination interaction. J. Am. Chem. Soc. 2013, 135(6), 2156–2159

    Article  CAS  Google Scholar 

  75. Anderson, C. A.; Jones, A. R.; Briggs, E. M.; Novitsky, E. J.; Kuykendall, D. W.; Sottos, N. R.; Zimmerman, S. C. High-affinity DNA base analogs as supramolecular, nanoscale promoters of macroscopic adhesion. J. Am. Chem. Soc. 2013, 135(19), 7288–7295

    Article  CAS  Google Scholar 

  76. Livnah, O.; Bayer, E. A.; Wilchek, M.; Sussman, J. L. Three-dimensional structures of avidin and the avidin-biotin complex. Proc. Natl. Acad. Sci. U S A, 1993, 90(11), 5076–5080

    Article  CAS  Google Scholar 

  77. Li, C.; Faulknerjones, A.; Dun, A. R.; Jin, J.; Chen, P.; Xing, Y. Z.; Yang, Z. Q.; Li, Z. B.; Shu, W. M.; Liu, D. S. Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting. Angew. Chem. 2015, 54(13), 3957–3961

    Article  CAS  Google Scholar 

  78. Han, Y. L.; Yang, Y. S.; Liu, S. B.; Wu, J. H.; Chen, Y. M.; Lu, T. J.; Xu, F. Directed self-assembly of microscale hydrogels by electrostatic interaction. Biofabrication 2013, 5(3), 35004, doi:10.1088/1758-5082/5/3/035004

    Article  Google Scholar 

  79. Li, Y. H.; Huang, G. Y.; Zhang, X. H.; Li, B. Q.; Chen, Y. M.; Lu, T. L.; Lu, T. J.; Xu, F. Magnetic hydrogels and their potential biomedical applications. Adv. Funct. Mater. 2013, 23(6), 660–672

    Article  CAS  Google Scholar 

  80. Xu, F.; Finley, T.; Turkaydin, M.; Sung, Y.; Gurkan, U. A.; Yavuz, A. S.; Guldiken, R.; Demirci, U. The assembly of cell-encapsulating microscale hydrogels using acoustic waves. Biomaterials 2011, 32(31), 7847–7855

    Article  CAS  Google Scholar 

  81. Cheng, M. J.; Liu, Q.; Xian, Y. M.; Shi, F. Programmable macroscopic supramolecular assembly through combined molecular recognition and magnetic field-assisted localization. ACS Appl. Mater. Interfaces 2014, 6(10), 7572–7578

    Article  CAS  Google Scholar 

  82. Cheng, M. J.; Wang, Y.; Yu, L. L.; Su, H. J.; Han, W. D.; Lin, Z. F.; Li, J. S.; Hao, H. J.; Tong, C.; Li, X. L.; Shi, F. Macroscopic supramolecular assembly to fabricate 3D ordered structures: towards potential tissue scaffolds with targeted modification. Adv. Funct. Mater. 2015, 25(44), 6851–6857

    Article  CAS  Google Scholar 

  83. Zhang, Y. W.; Cheng, M. J.; Wang, Y.; Shi, F. Constructing a multiplexed DNA pattern by combining precise magnetic manipulation and DNA-driven assembly. Langmuir 2017, DOI: 10.1021/acs.langmuir.7b02608

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Shi.

Additional information

Invited review for special issue of “Supramolecular Self-Assembly”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, MJ., Zhang, Q. & Shi, F. Macroscopic Supramolecular Assembly and Its Applications. Chin J Polym Sci 36, 306–321 (2018). https://doi.org/10.1007/s10118-018-2069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2069-z

Keywords

Navigation